Anharmonic oscillators, spectral determinant and short exact sequence of

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anharmonic Oscillators, Spectral Determinant and Short Exact Sequence of U Q ( Sl 2 )

We prove one of conjectures, raised by Dorey and Tateo in the connection among the spectral determinant of anharmonic oscillator, vacuum eigenvalues of transfer matrices in field theory and statistical mechanics. The exact sequence of Uq(ŝl2) plays a fundamental role in the proof. ∗e-mail: [email protected]

متن کامل

On Exact Solvability of Anharmonic Oscillators in Large Dimensions

Abstract. General Schrödinger equation is considered with a central polynomial potential depending on 2q arbitrary coupling constants. Its exceptional solutions of the so called Magyari type (i.e., exact bound states proportional to a polynomial of degree N) are sought. In any spatial dimension D ≥ 1, this problem leads to the Magyari’s system of coupled polynomial constraints, and only purely ...

متن کامل

New Type of Exact Solvability and of a Hidden Nonlinear Dynamical Symmetry in Anharmonic Oscillators

Schrödinger bound-state problem in D dimensions is considered for a set of central polynomial potentials containing 2q arbitrary coupling constants. Its polynomial (harmonicoscillator-like, quasi-exact, terminating) bound-state solutions of degree N are sought at an (q + 1)-plet of exceptional couplings/energies, the values of which comply with (the same number of) termination conditions. We re...

متن کامل

Zeros of eigenfunctions of some anharmonic oscillators

where P is a real even polynomial with positive leading coefficient, which is called a potential. The boundary condition is equivalent to y ∈ L(R) in this case. It is well-known that the spectrum is discrete, and all eigenvalues λ are real and simple, see, for example [3, 14]. The spectrum can be arranged in an increasing sequence λ0 < λ1 < . . .. Eigenfunctions y are real entire functions of o...

متن کامل

Sextic anharmonic oscillators and orthogonal polynomials

Under certain constraints on the parameters a, b and c, it is known that Schrödinger’s equation −d2ψ/dx2 + (ax + bx + cx)ψ = Eψ, a > 0 with the sextic anharmonic oscillator potential is exactly solvable. In this article we show that the exact wave function ψ is the generating function for a set of orthogonal polynomials {P (t) n (x)} in the energy variable E. Some of the properties of these pol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics A: Mathematical and General

سال: 1999

ISSN: 0305-4470,1361-6447

DOI: 10.1088/0305-4470/32/16/002